Login
Register
WSPC 2017 • Schedule • Participation • Location • WSC • WPC • Contact •Search •Recent

00 WSC | |

WSC and WPC 2017 -> WSC 2017 Instructions Booklet | 26 posts • Page 1 of 2 • 1 2 |

vopani |
| ||

WSPC Organizer Posts: 739 Location: India | sinchai4547 - 2017-10-04 11:20 AM For prizes, what is the criteria of Best debutant(e)? if i have been WSC only 1 time (year 2013), will i be eligible to get thus prize? This is eligible only for those participating in their first WSC. | ||

detuned |
| ||

Posts: 152 Location: United Kingdom | vopani - 2017-10-03 10:09 AM We have used the same paper quality for multiple offline championships in India (including our nationals in July-2017), and they have stood the test of solvers without any problems. That is why I suggested you can try out your instruments on the IB we provide you on Sunday, 15th October, since it uses the same ink and paper as the PB. Do you have any other suggestion? How did you test it last year? Ok good to know that it’s tried and tested at previous competitions, that’s all you needed to say :) I didn’t test last year as I didn’t really think about it - but I think it was a small problem on some puzzles, which is why I want to be prepared this year. I guess it adds some reassurance if the organisers are able to say they’ve at least thought about this potential issue! | ||

onigame |
| ||

Posts: 18 Location: United States | The book defines "Arithmetic Progression" as "A sequence of digits are in arithmetic progression if every consecutive pair of digits in the sequence have the same difference. The difference cannot be 0." According to this definition, 2,4,6,4,6,4,6,8,6,4,2,4,6 would be an Arithmetic Progression. I'm thinking it's safe to assume that the definition is imprecise and that consecutive pairs of digits need to have the same difference in the same direction for it to be an arithmetic progression, but please let us know if there is a chance of a "trick" here. may | ||

vopani |
| ||

WSPC Organizer Posts: 739 Location: India | onigame - 2017-10-07 6:21 AM The book defines "Arithmetic Progression" as "A sequence of digits are in arithmetic progression if every consecutive pair of digits in the sequence have the same difference. The difference cannot be 0." According to this definition, 2,4,6,4,6,4,6,8,6,4,2,4,6 would be an Arithmetic Progression. I'm thinking it's safe to assume that the definition is imprecise and that consecutive pairs of digits need to have the same difference in the same direction for it to be an arithmetic progression, but please let us know if there is a chance of a "trick" here. may Yes, the pairs have the same difference in the same direction. | ||

Para |
| ||

Posts: 315 Location: The Netherlands | Just a general question. Will the Instruction Booklets handed out at the WSC be the latest possible version or have they already been printed? If they are already printed, is it possible to print an addendum page to be handed with any corrections or clarifications that have been made here since the printing? | ||

vopani |
| ||

WSPC Organizer Posts: 739 Location: India | Para - 2017-10-08 5:15 PM Just a general question. Will the Instruction Booklets handed out at the WSC be the latest possible version or have they already been printed? If they are already printed, is it possible to print an addendum page to be handed with any corrections or clarifications that have been made here since the printing? It will be the final version. We will be publishing an entire list of changes along with the final version of the IB on the website / forum. | ||

26 posts • Page 1 of 2 • 1 2 |

Search this forum Printer friendly version |